Environmentally Friendly Low-Temperature Synthesis of Black TiO₂ Nanoparticles and Preliminary Cytotoxicity Evaluation in HEK-293T Cells
Resumen
Introduction: Titanium dioxide (TiO₂) finds use in various medical applications and devices. Its unique properties, particularly its band gap, play a key role in these applications. TiO₂ is widely employed in biomedical contexts due to its capability to reflect and scatter UV radiation, as well as its antimicrobial properties.
Objective: This study aimed to present an eco-friendly, low-temperature, and rapid method for synthesizing black titanium dioxide nanoparticles (BTiO2NPs) and to evaluate their cytotoxicity in human embryonic kidney cells.
Methods: An aqueous medium, ascorbic acid, and titanium chloride (TiCl3) were utilized for the synthesis. Nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectrometry. The cytotoxicity of BTiO2NPs was evaluated with the trypan blue exclusion and XTT assays.
Results: The obtained anatase had a crystallite size of under 10 nm, exhibiting a spherical morphology and oxygen-deficient surfaces. With excess TiCl3, an amorphous TiO2 phase could also form. The same synthesis without ascorbic acid yielded a rutile phase with a nanometric size. Over 80% viability was achieved in HEK-293T human embryonic kidney cells (HEK-293 T, CRL-3216 ATCC) across all treatments; a minimal time- and concentration-dependent effect on cell viability and proliferation was noted, indicating low cytotoxicity.
Conclusion: Surface-modified TiO₂ nanoparticles smaller than 100 nm were produced. They exhibited low cytotoxicity in human kidney cells (HEK-293T) while enhancing mitochondrial metabolism. Further studies are needed on this nanomaterial, which shows potential for biomedical applications.
Referencias
Ayorinde TSayes CM. An updated review of industrially relevant titanium dioxide and its environmental health effects. JHM Letters 2023 Nov; 4: 1-7. https://doi.org/10.1016/j.hazl.2023.100085
Andronic LEnesca A. Black TiO2 Synthesis by Chemical Reduction Methods for Photocatalysis Applications. Front. Chem. 2020 Nov; 8: 1-8. https://doi.org/10.3389/fchem.2020.565489
Tuntithavornwat S, Saisawang C, Ratvijitvech T, Watthanaphanit A, Hunsom M, Kannan AM. An extensive review of the recent development of black TiO2 nanoparticles for photocatalytic H2 production. Int. J. Hydrogen Energy 2024 Feb; 55: 1559-93. https://doi.org/10.1016/j.ijhydene.2023.12.102
Kafshgari MH, Goldmann WH. Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine”, Nano‑Micro Lett. 2020 Jan; 12(22): 1-35. https://doi.org/10.1007/s40820-019-0362-1
Selema TC, Malevu TD, Mhlongo, MR, Motloung SV, Motaung TE. Advancements in black titanium dioxide nanomaterials for solar cells: a comprehensive review. Emergent mater. 2024 May; 7, 2163–2188. https://doi.org/10.1007/s42247-024-00731-z
Xu L, Ma X, Sun N, Chen F. Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance. Appl. Surf. Sci. 2018 May; 441: 150-5. https://doi.org/10.1016/j.apsusc.2018.01.308
Shah MW, Zhu Y, Fan X, Zhao J, Li Y, Asim S, et al. Facile Synthesis of Defective TiO2-x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-Light Photocatalysis. Sci. Rep. 2015 Oct; 5: 1-8. https://doi.org/10.1038/srep15804
Ramírez-Herrera AD, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML, González-Domínguez MI. Bougainvillea spectabilis como mediadora para la biosíntesis de nanopartículas de plata, evaluación de su efecto antimicrobiano y citotóxico. Biotecnia, 2024; 26(1): 332–341. https://doi.org/10.18633/biotecnia.v26.2257
Prokopiuk V, Yefimova S, Onishchenko A, Kapustnik V, Myasoedov V, Maksimchuk P, et al. Assessing the Cytotoxicity of TiO2−x Nanoparticles with a Different Ti3+ (Ti2+)/Ti4+ Ratio. Biol. Trace Elem. Res. 2023 Aug; 201(6): 3117-30. https://doi.org/10.1007/s12011-022-03403-3
Ni W, Li M, Cui J, Xing Z, Li Z, Wu X, et al. 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater. Sci. Eng. C 2024 Dec; 81: 252-260. https://doi.org/10.1016/j.msec.2017.08.020
Sun L, Li Z, Li Z, Hu Y, Chen C, Yang C, et al. Design and mechanism of core–shell TiO2 nanoparticles as a high-performance photothermal agent. Nanoscale 2017 Aug; 9(42): 16183-92. https://doi.org/10.1039/C7NR02848B
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, et al. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. Toxics 2023 Oct; 11(11): 1-29 https://doi.org/10.3390/toxics11110882
Ramírez-Herrera AD. Nanostructured materials as potential neurotoxins [carta]. Rev. Ecuat. Neurol. 2024; 33(2): 19. https://doi.org/10.46997/revecuatneurol33200019
Jiménez-Mejía R, Ramírez-Herrera AD, Orozco-Ceja JA, González-Domínguez MI. Biosíntesis de nanopartículas de plata con actividad antimicrobiana por Pseudomonas aeruginosa ambiental. Mundo Nano. 2024; 17: 1-13. https://doi.org/10.22201/ceiich.24485691e.2024.32.69721
Saravanan S, Dubey RS. Optical and morphological studies of TiO2 nanoparticles prepared by sol–gel method. Mater. Today Proc. 2021 Apr; 47: 1811-1814. https://doi.org/10.1016/j.matpr.2021.03.207
Haryński Ł, Olejnik A, Grochowska K, Siuzdak K. A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data. Opt. Mater. 2022 May; 127: 1-9. https://doi.org/10.1016/j.optmat.2022.112205
Bajić V, Spremo-Potparević B, Živković L, Čabarkapa A, Kotur-Stevuljević J, Isenović E, et al. Surface-modified TiO2 nanoparticles with ascorbic acid: Antioxidant properties and efficiency against DNA damage in vitro. Colloids Surf. B Biointerfaces, 2017 Jul; 155: 323-31. https://doi.org/10.1016/j.colsurfb.2017.04.032
Dai S, Wu Y, Sakai T, Du Z, Sakai H, Abe M. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-Assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton. Nanoscale Res. Lett. 2010 Aug; 5: 1829- 35. https://doi.org/10.1007/s11671-010-9720-0
Pedraza F, Vazquez A. Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3” J. Phys. Chem. Solids 1999 Apr; 60(4): 445-8. https://doi.org/10.1016/S0022-3697(98)00315-1
Liu Y, Tian L, Tan X, Li X, Chen X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 2017 Mar; 62(6): 431-441. https://doi.org/10.1016/j.scib.2017.01.034
Chen S, Wang Y, Li J, Hu Z, Zhao H, Xie W, et al. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low-temperature annealing. Mater. Res. Bull. 2018 Feb; 98: 280-7. https://doi.org/10.1016/j.materresbull.2017.10.036
Su T, Yang Y, Na Y, Fan R, Li L, Wei L, et al. An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015 Jan; 7(6): 3754-63. https://doi.org/10.1021/am5085447
Huerta GE, Zepeda IQ, Sánchez BH, Colín VZ, Alfaro ME, Ramos GMdelP, et al. Internalization of Titanium Dioxide Nanoparticles Is Cytotoxic for H9c2 Rat Cardiomyoblasts. Molecules 2018 Aug; 23(8): 1-15. https://doi.org/10.3390/molecules23081955
Filippi C, Pryde A, Cowan P, Lee T, Hayes P, Donaldson K, et al. Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: Impact on metabolism and bioenergetics. Nanotoxicology 2014 Apr; 9(1): 126-34. https://doi.org/10.3109/17435390.2014.895437
Meena R, Rani M, Pal R, Rajamani P. Nano-TiO2-Induced Apoptosis by Oxidative Stress-Mediated DNA Damage and Activation of p53 in Human Embryonic Kidney Cells. Appl. Biochem. Biotechnol. 2012 May; 167: 791-808. https://doi.org/10.1007/s12010-012-9699-3
Wang S, Yu H, Wickliffe JK. Limitations of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol. In Vitro 2011 Dec; 25(8): 2147-51. https://doi.org/10.1016/j.tiv.2011.07.007
Tucci P, Porta G, Agostini M, Dinsdale D, Iavicoli I, Cain K, et al. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis. 2013 Mar; 4: 1-11. https://doi.org/10.1038/cddis.2013.76
Bo Y, Jin C, Liu Y, Yu W, Kang H. Metabolomic analysis on the toxicological effects of TiO2 nanoparticles in mouse fibroblast cells: from the perspective of perturbations in amino acid metabolism. Toxicol. Mech. Methods. 2014 Jul; 24(7): 461-9. https://doi.org/10.3109/15376516.2014.939321
Valentini X, Rugira P, Frau A, Tagliatti V, Conotte R, Laurent S, et al. Hepatic and Renal Toxicity Induced by TiO2 Nanoparticles in Rats: A Morphological and Metabonomic Study. J. Toxicol. 2019 Mar; (1): 1-19. https://doi.org/10.1155/2019/5767012
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomedicine. 2020 May; 15: 3447-3470. https://doi.org/10.2147/IJN.S249441
Du Kang, Guohua C, Xuyuan W. Fast charge separation and photocurrent enhancement on black TiO2 nanotubes cosensitized with Au nanoparticles and PbS quantum dots. Electrochim. Acta. 2018 Jul; 277: 244-254. https://doi.org/10.1016/j.electacta.2018.05.014
Saeed M, Zubair R, Wenzhi X, Yuanzhi K, Waheed W. Tunable Fabrication of New Theranostic Fe3O4-black TiO2 Nanocomposites: Dual Wavelength Stimulated Synergistic Imaging-guided Phototherapy in Cancer. J. Mater. Chem. B. 2018 Jan; 7(2): 210-223. https://doi.org/10.1039/C8TB02704H
Dathan P, Deepak R. A Review on Biomedical Applications of Titanium Dioxide. Trends Biomater. Artif. Organs. 2023; 37(1), 49-54.
Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials. 2018; 8(4): 1-16. https://doi.org/10.3390/nano8040245
Wang M, Yunlei S, Chengji W, Yue M, Xiangjian G. Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification. Biosens. Bioelectron. 2019 Mar; 128: 137-143. https://doi.org/10.1016/j.bios.2018.12.048
Enlaces refback
- No hay ningún enlace refback.












